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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-$

ANALYSIS OF REGIONAL DATA FROM CRATERING AND
NON-CRATERING NUCLEAR EXPLOSIONS

SUMMARY

A comparison of regional phases generated by contained and cratering nuclear explosions is made

by examining the amplitudes of various phases and by spectral analyses. Using Ringdal's maximum

likelihood method, in which one can also make use of clipped readings as well as noise measurements,

amplitudes of the regional phases Pn, Pg, Lg (corrected for spatial attenuation) and the ratio Pmax/Pa

(where Pmax is the largest amplitude in the first 5 sec of Pn, and where Pa refers to the "a" phase),

were plotted against the known yields of explosions. No systematic distinction could be observed, at

regional distances, between cratering and non-cratering explosions at NTS; the excitation of various

regional phases appears to depend more on conditions at or near the source than on whether the shot

produced a crater or not. We also examined the spectra of Pn on KN-UT records of several Pahute

Mesa explosions covering a wide range of scaled depths. The observed modulation of Pn spectra

agreed with that expected due to cancellation by pP in only a few instances. A comparison of the Pn

spectra of closely spaced explosions suggested that the pP arrivals are probably severely distorted by

the effects of inelastic processes in the source region of large explosions and by scattering due to large

lateral variations. These two effects may, in most cases, be strong enough not only to obliterate any

definite evidence of the classical pP arrival but also to mask any differences between cratering and

contained explosions recorded at regional distances. Aceessong Po
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NOTE: Figures 1, 2, and 3 contain data points based on classified yield values and are there-
fore not included here. These three figures can be seen in Appendix A, TGAL-85-5.

Figure No. Title Page

4 Three-component, short-period records of the seven explosions listed in 7-13
Table III at the LRSM station KN-UT. The records for each explosion
show the vertical (top trace), radial (middle trace), and transverse (bot-
tom trace) motions, respectively. The data are calibrated and the larg-
est zero-to-peak amplitudes are given in nanometers (NM).

5 Three-component, short-period records of six out of the seven explo- 14-19
sions listed in Table II (i.e. all except Schooner) at the LRSM station
MN-NV. The records for each explosion show the vertical (top trace),
radial (middle trace), and transverse (bottom trace) motions, respective-
ly. The data are calibrated and the largest zero-to-peak amplitudes are
given in nanometers (NM).

6 Vertical-component displacement amplitude spectra (symbol +), not 20-26
corrected for instrument response, of Pn (based on 6.4 sec long win-
dow with 10% cosine taper) recorded at KN-UT for the seven explo-
sions listed in Table III. Spectra of an equal window length of noise
are also included (symbol o).

7 Spectral ratios of Pn recorded at KN-UT with respect to Buteo for the 28-33
explosions listed in Table III. The ratios are corrected for noise and
points for which SIN power ratio is less than 2 are not plotted. The
dashed line shows the mean least squares slope over the frequency
range of 1.0 to 5.0 Hz. Mean slope, with associated standard deviation
(+/-), and the intercept (INTERC) values are indicated for the two fre-
quency ranges of 1.0 to 5.0 Hz and 1.0 to 4.0 Hz.

8a Spectra of Pn (based on 5.12 sec long window) for the Pahute Mesa 35
explosions Mast and Stilton recorded at the broadband digital station
Elko. The spectral ratios Mast/Stilton, corrected for noise, are also
shown.

8b Spectra of Pn (based on 5.12 sec long window) for the Pahute Mesa 36
explosions Mast and Stilton recorded at the broadband digital station
Kanab. The spectral ratios Mast/Stilton, corrected for noise, are also
shown.
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-5

8c Spectra of Pn (based on 5.12 sec long window) for the Pahute Mesa 37
explosions Mast and Stilton recorded at the broadband digital station
Landers. The spectral ratios Mast/Stilton, corrected for noise, are also
shown.

9 Location map of all 51 announced Pahute Mesa explosions up to 24 39
June 1982. The available average overburden velocity (km/sec) and
shot depth (m) are indicated, and all 13 events cited in the text are
identified.
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-5

INTRODUCTION

In this study, a comparison of the regional phases generated by contained and cratering nuclear

explosions was carried out. The regional phases studied were Pn, Pg, and Lg as well as Pa and Pmax,

where Pa refers to the "a" phase and where Pmax is the largest amplitude in the first 5 sec of Pn.

Short-period records of explosions at both Yucca Flats and Pahute Mesa regions of the Nevada Test

Site were examined at several stations within an epicentral distance of about 20 deg. Most of the ana-

lyses was carried out on time-domain measurements. Spectral data from a limited number of explosions

were studied in order to understand the generation of regional phases by cratering and non-cratering

explosions. The spectra and spectral ratios of Pn were examined since it is especially important to

know what possible role pP arrivals play in the make-up of Pn.

Teledyne Geotech July 1985



TASK I ANALYSIS OF REGIONAL DATA TGAL-85-5 S

TIME-DOMAIN ANALYSES OF REGIONAL PHASES

We analyzed data on regional phases Pn, Pg, and Lg from 4 cratering and 8 nearby contained

explosions at NTS. Table 1 lists these 12 explosions along with pertinent information such as the shot

medium, shot depth, and depth of water table. Five of these explosions are from the Yucca Flats region

of the NTS, including the cratering explosion Sedan. The remaining 7 shots are from Pahute Mesa and _

include 3 cratering explosions : Palanquin, Cabriolet, and Schooner.

TABLE 1

NTS CRATERING AND CONTAINED EXPLOSIONS USED IN REGIONAL STUDY

No. Name Date Shot Shot Depth of Location
Medium Depth Water Table
(m) (m) S

1 Sedan* 06 July 62 alluvium 194 576 YF
2 Mississippi 05 Oct 62 tuff 494 561 YF
3 Fore 16 Jan 64 tuff 491 556 YF
4 Dub 30 Jun 64 alluvium 259 568 YF
5 Par 09 Oct 64 alluvium 406 594 YF
6 Palanquin* 14 Apr 65 rhyolite 86 488 PM
7 Duryea 14 Apr 66 rhyolite 544 662 PM
8 Cabriolet* 26 Jan 68 rhyolite 52 488 PM
9 Scroll 23 Apr 68 tuff 224 635 PM
10 Chateaugay 28 Jun 68 tuff 617 633 PM
11 Schooner* 08 Dec 68 tuff 111 274 PM
12 Purse 07 May 69 tuff 599 594 PM

*cratering explosion

The regional data examined in this phase of the study came from the Long Range Seismic Meas-

urements (LRSM) stations located within an epicentral distance A of about 20'. The largest amplitudes

of Pn, Pg, and Lg were read on the vertical component short-period records, and the corresponding

ground motion values A, corrected for instrument response, were obtained. These amplitudes were

plotted versus yield on a log-log scale for several stations for which a fair amount of data were avail-

able. Results for the station KN-UT, shown in Figure 1, are typical of those obtained from other sta-

Teledyne Geotech 2 July 1985
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-5

tions as well. The explosion numbers on plots correspond to those in Table 1. Plots of amplitude

versus yield for Pn, Pg, and Lg (Figures la, b, and c) have correlation coefficients of 0.79, 0.56, and

0.90, respectively. In other words, Pg has the largest scatter and Lg the least. The strong correlation

between Lg amplitudes and the yield of NTS explosions has of course been noted before by several

investigators (e.g., Blandford and Klouda, 1980; Nuttli, 1983).

In order to make use of multi-station data that included clipped readings as well as noise meas-

urements, Ringdal's (1976) maximum likelihood estimation method was applied to the regional data.

The analysis was limited to observations made within A less than 100 because the cratering explosions,

with the exception of Sedan, did not produce any observable regional phases at A greater than 100.

The Pn, Pg, and Lg amplitudes were corrected for attenuation with distance A by using the empirical

attenuation rates of A"3"8 for Pn (Der et at., 1982) and A-3 for both Pg and Lg (Blandford et at., 1981;

Der et al., 1982). The resulting values of the maximum likelihood magnitudes (arbitrary units) for Pn,

Pg, and Lg are given in Table 2 and plotted versus log yield in Figures 2a,b, and c, respectively. The

explosion numbers again correspond to those in Table 1. The correlation coefficients for the three

plots are 0.81, 0.80, and 0.87, respectively. These figures again indicate better correlation with yield

for Lg than for Pn or Pg. Furthermore, there is again no clear distinction between the cratering and

contained explosion populations. In fact, the same explosions seem to have abnormally high or low

amplitudes on all phases (Pn, Pg, and Lg). Specifically, explosions numbered 6, 7, 8, and 12 have

larger than average values for nearly all three phases whereas explosions 1, 4, and 5 have lower than

average values. Explosions 6, 7, and 8 were in rhyolite (see Table 1), which is expected to provide

better coupling than alluvium or tuff, the shot medium for the other explosions. Note that in Table 1,

explosion 12 (Purse) is the only one with shot point below the water table, which can also lead to

better coupling or larger amplitudes. Similarly, the explosions 1, 4, and 5 have generally lower than

average amplitudes on all three phases, and this could be because these are the only explosions in allu-
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-5

vium (above the water table), which is known to provide low coupling. It seems therefore that the

amplitudes of regional phases are mainly controlled by the characteristics of the shot medium and not

to any significant extent by whether the explosion is cratering or contained. The relatively better corre-

lation between yield and Lg amplitudes (Figure 2c) indicates that Lg is considerably less sensitive to

the effects of differences in coupling properties than are the other two phases Pn and Pg (Figures 2a

and 2b).

TABLE 2

RINGDAL'S MAXIMUM-LIKELIHOOD ESTIMATES

No. Name mb (Pn) mb(Pg) mb(Lg) log(Pmax/Pa)

I Sedan* 12.01 10.59 10.71 1.15
2 Mississippi 12.56 11.19 11.17 1.31
3 Fore 12.46 11.18 11.21 1.12
4 Dub 11.11 9.97 9.86 0.68
5 Par 11.63 10.46 10.52 0.79
6 Palanquin* 11.61 10.44 10.26 0.78
7 Duryea 12.94 11.52 11.27 1.14
8 Cabriolet* 11.40 10.08 10.02 0.61
9 Scroll 11.38 10.16 9.79 0.89
10 Chateaugay 12.94 11.87 11.26 0.82
11 Schooner* 12.05 10.74 10.85 0.99
12 Purse 13.41 12.13 11.84 1.14

*crateing explosion

All available regional data for epicentral distances less than 100 were also used to measure ampli-

tudes of the Pa and Pmax phases, where Pa refers to the "a" phase and where Pmax is the largest

amplitude in the first 5 sec of Pn. The maximum-likelihood method was applied to all available values

of log (Pmax/Pa) for each explosion; the resulting values are also given in Table 2. A plot of the

resulting maximum-likelihood ratio Pmax/Pa versus explosion yield (on log-log scale) for these explo-

sions is shown in Figure 3. The least squares linear regression relationship (dashed line) has a mean

slope of 0.264 and correlation coefficient of only 0.768; the scatter in the data seems too large to indi-

Teledyne Geotech 4 July 1985
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cate a definite linear relationship. Moreover, there appears to be no clear separation between the

cratering and non-cratering explosion populations.
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-S

DIGITAL DATA AND SPECTRAL ANALYSES

Short-period, three-component digital data from a selected number of explosions, recorded at the

LRSM stations KN-UT and MN-NV, were examined in order to understand some of the complexity

of regional phases. Both cratering and non-cratering explosions at various depths were studied. The

explosions are listed in Table 3, which also includes information on yield and scaled depth (defined as

h/W 1 3, where h is the depth [m] and W is the yield [kt]). The yield values are from Springer and

Kinnaman (1971) except for Buteo. The scaled depth is a measure of whether an explosion is over-

buried or underburied or "normal" (most U. S. contained explosions have scaled depths of about 150

m/kt13). Available three-component records of these 7 explosions at KN-UT and MN-NV are shown

in Figures 4 and 5, respectively.

TABLE 3

PAHUTE MESA EXPLOSIONS USED IN SPECTRAL ANALYSES

No. Name Date Shot Shot Depth of Yield Scaled
Medium Depth Water Table Depth#
(m) (m) (kt)

I Buteo 12 May 65 tuff 696 660 - -

2 Rex 24 Feb 66 tuff 671 642 16 266
3 Duryea 14 Apr 66 rhyolite 544 662 65 135
4 Scotch 23 May 67 tuff 977 672 150 184
5 Cabriolet* 26 Jan 68 rhyolite 52 488 2.3 39
6 Schooner* 8 Dec 68 tuff 111 274 35 34
7 Benham 19 Dec 68 tuff 1402 641 1100 136

* cratering explosion

# h/W"/3 where h is depth [m] and W is yield [kt]

The spectra of Pn at KN-UT, obtained by taking a window of 6.4 sec length and applying a 10%

cosine taper, are shown in Figure 6. The spectra of samples of noise, taken immediately preceding the

Pn window, are included in each figure. Similar spectra of Pn at MN-NV could not be obtained

because of the lack of a sufficiently long time window separating the Pn and Pg arrivals (see Figure 5).

Teledyne Geotech 6 July 1985
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Figure 4. Three-component, short-period records of the seven explosions listed in Table III at the
LRSM station KN-UT. The records for each explosion show the vertical (top b-ace), radial (middle
trace), and transverse (bottom trace) motions, respectively. The data are calibrated and the largest
zero-to-peak amplitudes are given in nanometers (NM).
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Figure 4. Continued. Three-component, short-period records of the seven explosions listed in Table III
at the LRSM station KN-UT. The records for each explosion show the vertical (top trace), radial (mid-
dle trace), and transverse (bottom trace) motions, respectively. The data are calibrated and the largest
zero-to-peak amplitudes are given in nanometers (NM).
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Figure 4. Continued. Three-component, short-period records of the seven explosions listed in Table III
at the LRSM station KN-UT. The records for each explosion show the vertical (top trace), radial (mid-
dle trace), and transverse (bottom trace) motions, respectively. The data are calibrated and the largest
zero-to-peak amplitudes are given in nanometers (NM).
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Figure 4. Continued. Three-component, short-period records of the seven explosions listed in Table Ill
at the LRSM station KN-UT. The records for each explosion show the vertical (top trace), radial (mid-
dle trace), and transverse (bottom trace) motions, respectively. The data are calibrated and the largest
zero-to-peak amplitudes are given in nanometers (NM).
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figure 4. Continued. Three-component, short-period records of the seven explosions listed in Table III
at the LRSM station KN-UT. The records for each explosion show the vertical (top trace), radial (mid-
dle trace), and transverse (bottom trace) motions, respectively. The data are calibrated and the largest
zero-to-peak amplitudes are given in nanometers (NM).
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Figure 4. Continued. Three-component, short-period records of the seven explosions listed in Table III
at the LRSM station KN-UT. The records for each explosion show the vertical (top trace), radial (mid-
dle trace), and transverse (bottom trace) motions, respectively. The data are calibrated and the largest
zero-to-peak amplitudes are given in nanometers (NM).
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Figure 5. Three-component, short-period records of six out of the seven explosions listed in Table III
(i.e. all except Schooner) at the LRSM station MN-NV. The records for each explosion show the verti-
cal (top trace), radial (middle trace), and transverse (bottom trace) motions, respectively. The data are
calibrated and the largest zero-to-peak amplitudes are given in nanometers (NM).
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Figure 5. Continued. Three-component, short-period records of six out of the seven explosions listed in
Table III (i.e. all except Schooner) at the LRSM station MN-NV. The records for each explosion show
the vertical (top trace), radial (middle trace), and transverse (bottom trace) motions, respectively. The
data are calibrated and the largest zero-to-peak amplitudes are given in nanometers (NM).
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Figure 5. Continued. Three-component, short-period records of six out of the seven explosions listed in
Table III (i.e. all except Schooner) at the LRSM station MN-NV. The records for each explosion show
the vertical (top trace), radial (middle trace), and transverse (bottom trace) motions, respectively. The
data are calibrated and the largest zero-to-peak amplitudes are given in nanometers (NM).
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Figure 5. Continued. Three-component, short-period records of six out of the seven explosions listed in
Table III (i.e. all except Schooner) at the LRSM station MN-NV. The records for each explosion show
the vertical (top trace), radial (middle trace), and transverse (bottom trace) motions, respectively. The
data are calibrated and the largest zero-to-peak amplitudes are given in nanometers (NM).
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Figure 5. Continued. Three-component, short-period records of six out of the seven explosions listed in
Table III (i.e. all except Schooner) at the LRSM station MN-NV. The records for each explosion show
the vertical (top trace), radial (middle trace), and transverse (bottom trace) motions, respectively. The
data are calibrated and the largest zero-to-peak amplitudes are given in nanometers (NM).
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Figure 5. Continued. Three-component, short-period records of six out of the seven explosions listed in
Table III (i.e. all except Schooner) at the LRSM station MN-NV. The records for each explosion show
the vertical (top trace), radial (middle trace), and transverse (bottom trace) motions, respectively. The
data are calibrated and the largest zero-to-peak amplitudes are given in nanometers (NM).
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Figure 6. Vertical-component displacement amplitude spectra (symbol +), not corrected for instrument
response, of Pn (based on 6.4 sec long window with 10% cosine taper) recorded at KN-UT for the
seven explosions listed in Table 111. Spectra of an equal window length of noise are also included
(symbol oD).
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Figure 6. Continued. Verticalz-component displacement amplitude spectra (symbol +), not corrected for
instrument response, of Pn (based on 6.4 sec long window with 10% cosine taper) recorded at KN-UT
for the seven explosions listed in Table 111. Spectra of an equal window length of noise are also
included (symbol 0n).
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Figure 6. Continued. Vertical-component displacement amplitude spectra (symbol +,not corrected for
instrument response, of Pn (based on 6.4 sec long window with 10% cosine taper) recorded at KN-UT
for the seven explosions listed in Table 111. Spectra of an equal window length of noise are also
included (symbol C)).
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Figure 6. Continued. Vertical-component displacement amplitude spectra (symbol +), not corrected for
instrument response, of Pn (based on 6.4 sec long window with 10% cosine taper) recorded at KN-LJT
for the seven explosions listed in Table III. Spectra of an equal window length of noise are also
included (symbol (D).
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Figure 6. Continued. Vertical-component displacement amplitude spectra (symbol ),not corrected for
instrument response, of Pn (based on 6.4 sec long window with 10% cosine taper) recorded at KN-UT
for the seven explosions listed in Table 111. Spectra of an equal window length of noise are also
included (symbol cD).
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Figure 6. Continued. Vertical-component displacement amplitude spectra (symbol ),not corrected for
instrument response, of Pn (based on 6.4 sec long window with 10% cosine taper) recorded at KN-UT
for the seven explosions listed in Table 111. Spectra of an equal window length of noise are also
included (symbol e0).
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Figure 6. Continued. Vertical-component displacement amplitude spectra (symbol +,not corrected for
instrument response, of Pn (based on 6.4 sec long window with 10% cosine taper) recorded at KN-UT
for the seven explosions listed in Table Ill. Spectra of an equal window length of noise are also
included (symbol 0D).
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-5

Spectral ratios of Pn with respect to Buteo on the vertical-component records at KN-UT are shown in

Figure 7. These are corrected for noise and somewhat smoothed. Most spectra in Figure 6 and the

spectral ratios in Figure 7 appear to show the rather systematic modulation with frequency expected

because of cancellation by pP. A closer examination indicates, however, many puzzling features that

are hard to understand.

Let us first examine the Pn spectra of Buteo and Duryea, both of which were detonated in the

same hole but at somewhat different depths. Note that Buteo was vastly overburied. The rather small

difference in shot depths of Buteo and Duryea means that, for frequencies less than at least 3 Hz, the

propagation paths to KN-UT may be considered to be essentially identical. The spectra of Pn for

Buteo (Figure 6a) shows a null at about 1.7 Hz, which agrees well with the value expected on the

basis of the shot depth and medium velocity information available for many Pahute Mesa explosions.

This means that frequencies lower than at least 2 Hz or so are not substantially influenced by the

effects of scattering (both near-source and near-receiver). The explosion Duryea took place in the

same hole as Buteo but at shallower depth (see Table 3), and an estimate of its spectral null would

suggest a value of about 2.0 to 2.1 Hz, substantially larger than the observed spectral null frequency of

1.7 Hz in Figure 6c. The spectral ratio Duryea/Buteo in Figure 7b also appears to lack the frequency

modulation expected for two explosions at different depths but with. nearly identical source-receiver,

propagation paths. One may suggest that the explosion-affected (fractured) volume around the shot-

point of Duryea was large enough to slow down the reflected pulse pP during its propagation down-

ward from the free surface. This explanation is, however, not very likely because of the propagation

paths involved in Pn and the expected small reduction in the sonic velocity (see Springer, 1974).

Non-linear processes, expected to be more prominent for explosions with lower scaled depths, can also

retard the downward passage of pP by considerable amounts (Trulio, 1981) and may therefore consti-

tute a more likely explanation. Note also that the near-field pulse from underground explosions may

exhibit non-linear behavior at least out to a scaled radius of about 100 m/kt1/3 (McCartor and
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Figure 7. Spectral ratios of Pn recorded at KN-UT with respect to Buteo for the explosions listed in
Table III. The ratios are corrected for noise and points for which SIN power ratio is less than 2 are not
plotted. The dashed line shows the mean least squares slope over the frequency range of 1.0 to 5.0 Hz.
Mean slope, with associated standard deviation (+/-), and the intercept (INTERC) values are indicated
for the two frequency ranges of 1.0 to 5.0 Hz and 1.0 to 4.0 Hz. I
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Figure 7. Continued. Spectral ratios of Pn recorded at KN-UJT with respect to Buteo for the explosions
listed in Table III. The ratios are corrected for noise and points for which S/N power ratio is less than
2 are not plotted. The dashed line shows the mean least squares slope over the frequency range of 1.0
to 5.0 Hz. Mean slope, with associated standard deviation (+/-), and the intercept (INTERC) values are
indicated for the two frequency ranges of 1.0 to 5.0 Hz and 1.0 to 4.0 Hz.
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Figure 7. Continued. Spectral ratios of Pn recorded at KN-UT with respect to Buteo for the explosions
listed in Table III. The ratios are corrected for noise and points for which S/N power ratio is less than
2 are not plotted. The dashed line shows the mean least squares slope over the frequency range of 1.0
to 5.0 Hz. Mean slope, with associated standard deviation (+/-), and the intercept (INTERC) values are
indicated for the two frequency ranges of 1.0 to 5.0 Hz and 1.0 to 4.0 Hz.
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Figure 7. Continued. Spectral ratios of Pn recorded at KN-UT with respect to Buteo for the explosions
listed in Table III. The ratios are corrected for noise and points for which S/N power ratio is less than
2 are not plotted. The dashed line shows the mean least squares slope over the frequency range of 1.0
to 5.0 Hz. Mean slope, with associated standard deviation (+/-), and the intercept (INTERC) values are
indicated for the two frequency ranges of 1.0 to 5.0 Hz and 1.0 to 4.0 Hz.

31

i F



(e)

SCHOONER / BUTEO

FREQUENCY HZ
'b . 01002.03.00 L. 00 5.00

LU +

F- +
Li+

++

+*C-. +
+I + ++

++ +

b+

FREQ BAND SLOPE 1- Y INTERC

1.0-5.0 -0.1126E+-OO 6.178E-02 1.959E+01
1.0-4t.0 -O.7'fOE+00 6. 1471E-02 9.23"E401

Figure 7. Continued. Spectral ratios of Pn recorded at KN-UT with respect to Buteo for the explosions
listed in Table 111. The ratios are corrected for noise and points for which SIN power ratio is less than
2 are not plotted. The dashed line shows the mean least squares slope over the frequency range of 1.0
to 5.0 Hz. Mean slope, with associated standard deviation (+/-), and the intercept (INTERC) values are
indicated for the two frequency ranges of 1.0 to 5.0 Hz and 1.0 to 4.0 Hz.
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Figure 7. Continued. Spectral ratios of Pn recorded at KN-UT with respect to Buteo for the explosions

listed in Table III. The ratios are corrected for noise and points for which S/N power ratio is less than

2 are not plotted. The dashed line shows the mean least squares slope over the frequency range of 1.0

to 5.0 Hz. Mean slope, with associated standard deviation (+/-), and the intercept (INTERC) values are

indicated for the two frequency ranges of 1.0 to 5.0 Hz and 1.0 to 4.0 Hz.
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Wortman, 1985), a value fairly close to the scaled depth of Duryea (see Table 3). Note also that, for

frequencies greater than about 2.5 Hz, the Pn spectra of Buteo shows much stronger frequency modu-

lation than that of Duryea. The finite-difference calculations of McLaughlin et al. (1985; see also Fig-

ure 5, Der et al., 1985) demonstrate that near-source scattering can "fill" the higher frequency spectral

nulls due to cancellation by pP. Greater scattering for Duryea than for Buteo could again be due to

significantly larger explosion-fractured volume around the shot point of Duryea. Differences between

the Pn spectra of Buteo and Duryea may therefore be due to either non-linear behavior or near-source

scattering or to a combination of the two.

The explosion Rex was detonated at a distance of only about 3 km from Buteo, and the two shots

have nearly the same depths (see Table 3). This makes it hard to explain the observed spectral nulls for

Rex at about 1.3 and 2.5 Hz in Figure 6b and the large modulation, even at low frequencies, in the

observed spectral ratio Rex/Buteo in Figure 7a. Differences in near-source scattering alone are

unlikely to explain the large low-frequency differences between the spectra of Rex and Buteo (see Fig-

ure 5 of Der et al., 1985, wherein the low-frequency spectra are not much contaminated by the scat-

tered arrivals). Inelastic processes may again provide a more logical explanation. In addition to Buteo

and Duryea, the cratering explosion Cabriolet at depth of only 52 m and Benham with shot depth of

1402 m also indicate spectral nulls at about 1.7 Hz (see Figures 6e and 6g).. It is hard to explain these

observations without assuming non-linear processes and scattering due to complex near-source struc-

tures.

Figure 8 shows the Pn spectra of Mast and Stilton at the three broadband digital stations Elko,

Kanab (the same location as KN-UT), and Landers; the signals at the fourth station Mina were clipped.

The shot medium for Mast was considerably harder rock (work-point velocity of about 4.2 km/sec)

than for Stilton (work-point velocity about 2.6 km/sec). The three stations are approximately north,

east, and south of NTS at distances of about 400, 300, and 300 km, respectively. On the basis of their

Teledyne Geotech 34 July 1985



- ~ ~ v w-~wRm mwr IVnUXsInm U F Um~ lII ~ . ..

ELKO Pn(5.12 sec)
10

+++++ +++**+*++ MS

I T

Ui +4

++++ +

U) 4

00

0~~ 0ATSTL

:1 
K

mb fKK

_ SUM iLTON

-j - I

0. 0 2 00 .0.00 80 00
00I 000 000 00

61J it U, K



KANAB Pn(5.12 sec)
0

(~) .44+,MAST

U1 +

++ ++

++ ++

z

0000 C000

0 0 0 00

00(D 
0

U STILTON

4+ ++ +++4

z 
+ +++*+++4

000 00 0

0000 00

2 2.00 FREQUENCY HZ
-C .00 0 .00 6.00 8.00 10. 00

Cr MAST/STILTON
MKM K XMM ur KM

KO uK K MI M
3 U WN M~

N9 M
KK

Figure 8b. Spectra of Pn (based on 5.12 sec long window) for the Pahute Mesa explosions Mast and
Stilton recorded at the broadband digital station Kanab. The spectral ratios Mast/Stilton, corrected for
noise, are also shown.
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-5

known depths and overburden velocities, the spectral nulls due to pP cancellation should occur at about

2.1, 4.2, 6.3, ... Hz for Mast and 1.5, 3.0, 4.5, ... Hz for Stilton. The observed spectra of Mast at the

three stations show modulation in fair agreement with what should be expected. The same, however,

cannot be said for the results from Stilton. These differences may again be due to non-linear effects

which are medium-dependent and less pronounced for harder rocks (Trulio, 1981). The spectral ratios,

Mast/Stilton, also shown in Figure 8, indicate fairly large differences from one station to another. Mast

and Stilton are separated by less than 20 km, so their paths to the three stations should not be much

different, and the spectral ratios Mast/Stilton should be essentially free from the effects of local

(receiver) structure. Differences in the spectral ratios at the three sites therefore imply large azimuthal

variations in the source spectra of Pn.
3

Large lateral variations in elastic parameters seem to exist within the Pahute Mesa region. Figure

9 shows the location of 51 Pahute Mesa explosions along with all available data on overburden velo-

city (i.e., average shot-point to surface velocity) from 33 explosions. Extreme lateral and vertical vari-

ations in velocity, probably due to the presence of alternating layers of various tuffs and rhyolites of

irregular thicknesses, are evident. For example, in the source region of Mast, with the highest reported

,overburden velocity of 3.9 km/sec, several high velocity rhyolite layers with velocity as high as 4.6

km/sec intersect the overburden (Nancy Howard, written communication). Figure 9 indicates an over-

burden velocity of only 2.0 km/sec at an explosion site only about 500 mn from the ground zero for

Mast. Although the shot depths for the two explosions are different, the high velocity rhyolites near

the Mast location have to be very thin or absent at the neighboring shot location. It seems therefore

likely that the large differences in the spectra of Pn, observed even for explosions that are close, are
r

due to a combination of non-linear effects of inelastic processes and complex near-source structure

with strong lateral variations.
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TASK 1 ANALYSIS OF REGIONAL DATA TGAL-85-5

A comparison of the Pn spectra (Figure 6) and the spectral ratios (Figure 7) of the two cratering

and five non-cratering explosions shows no obvious differences. This seems to imply that the pP

arrivals from cratering and non-cratering explosions are not much different. But the cratering explo-

sions are not expected to have well-defined pP arrivals, because there is no true reflection of energy at

the free surface. Perhaps the effects of non-linear behavior and complex near-source structure dom-

inate over those distinguishing between cratering and non-cratering explosions.
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DISCUSSION AND CONCLUSION

A comparison of the amplitudes of regional phases Pn, Pg, and Lg as well as the ratio Pmax/Pa

from cratering and non-cratering explosions failed to show any systematic differences. These ampli-

tudes appear to be dependent more on the characteristics of the shot medium and near-source environ-

ment than on whether the explosion is cratering or not. These results are not surprising, in view of the

extreme variability of regional phases noted in several earlier studies (e.g., Springer and Denny, 1976;

Patton and Vergino, 1981; Gupta et al., 1984). An important contributor to the large variability is gen-

erally believed to be near-source scattering (Gupta and Blandford, 1983; Hill and Levander, 1984; Der

et al., 1984, McLaughlin et al., 1985).

The spectra of Pn show no obvious distinction between cratering and contained explosions. A

comparison of data from closely spaced shots suggests Pn to be strongly influenced by the effects of

non-linear behavior and complex near-source structure. Whereas the Pn spectrum of the vastly over-

buried explosion Buteo showed definite evidence of cancellation by pP, the details of spectral modula-

tion for most other explosions indicate significant differences from what would be expected on the

basis of an idealized compressional point source. It seems that, although pP is a significant contributor

to Pn for most explosions, as evidenced by nearly periodic undulations in the Pn spectra of several

explosions, it can easily be masked beyond recognition by the effects of the non-linear behavior of

rocks around the shot point and scattering. Our results regarding the role of pP in the composition of

Pn are in general agreement with those of Der et al. (1985), obtained by using a multichannel decon-

volution method, for teleseismic P and pP from NTS explosions. It is recommended that more

regional data, especially from closely spaced shots, be analyzed to explore further the roles of non-

linear behavior and near-source scattering in the make-up of regional phases.
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